
Charmonium production
in pp, pA and AA collisions

Puzzles and solutions

Boris Kopeliovich
Valparaiso, Chile Brookhaven

May 10-12, 2010



B. Kopeliovich, BNL, May 10‐12, 2010

Outline

 pp: 

leading/high twist shadowing, saturation, 
color transparency, etc.

mechanisms of J/ψ production vs data

 pA: 

 AA: puzzling behavior of          (     ) ; 
charmonium as a probe for the dense matter;
transport coefficient from J/ψ suppression

pTRJ/Ψ
AA
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Color singlet mechanism

E.Berger & D.Jones (1980)

R.Baier &  R.Ruckl (1981)}
collinear
factoriz. 

kT factorization

from χ

direct J/Ψ

Understanding pp data 3

Ph.Hagler, R.Kirschner,
A.Schaefer, L.Szymanowski, & O.Teryaev (2001)
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The NNLO contribution is enhanced by 
the factor lns, which allows to bring the 
cross section up to the data.

CDF

Understanding pp data

Modified color singlet mechanism

direct J/Ψ

total yield

V.A. Khoze, A.D. Martin, M.G. Ryskin and W.J. Stirling
(2004)

NLO NNLO
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“I think you should be more explicit here in step two”

Color octet/evaporation models
5
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Understanding pA data

J/Ψ

e−σabsρAL

             NA60: 
why does      decrease with energy?σeff

no, it doesn’t

NA3

The 1st answer:   why not?

The 2d answer:  

6

The 3rd answer:  color transparency
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Time scales for J/Ψ production
Color transparency

rJ/Ψrc̄c

BK, A.Tarasov, J.Hüfner (2001)

color transparency

Eχ(GeV)
R

p
A

1/x2

rc̄c ∼
1

mc
∼ 0.1fmA     dipole is produced with a small separationc̄c

and then evolves into a J/Ψ mean size 
during formation time

rJ/Ψ ∼ 0.5 fm

E
86

6

N
A

50
/6

0

At low J/Ψ energy the dipole quickly 

expands to J/Ψ, while at high energy

Lorentz time dilation keeps the initial 
small size. So with rising energy      
drops, and       increases.

σabs
RpA

7

tf = 2EJ/Ψ

m2
Ψ′−m2

J/Ψ
= 0.1 fm

(
EJ/Ψ

1GeV

)
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Time scales for J/Ψ production
Quark shadowing

Shadowing onsets when the production time

(5 times shorter than   )tf

is a higher twist related to the non-zero     
separation. Cannot be measured in other
processes, but can be well calculated.

c̄c

Path integral technique: all possible paths of the 
quarks are summed up.             gives the    
imaginary part of the light-cone potential

σabs(rT)

p + Pb→ χ2 + X

Eχ(GeV)

R
p
A

1/x2

formation + shadowing

only formation

γA→ J/ΨX

8

tp =
2EJ/Ψ

m2
J/Ψ

=
1

x2mN
! RA
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At forward rapidities     is falling asx2 x2 ≥ e−η
√

(m2
J/Ψ + 〈p2

T〉)/s

Time scales for J/Ψ production
Gluon shadowing

The coherence length for gluon shadowing is much shorter than for quarks,

Pg ≈ 0.1 is independent of the scale.

This is why there is no shadowing above where x̃2 = x2/(1− x1)x̃2 ! 0.01

No gluon shadowing in any of the fixed-target experiments 
       on charmonium production. Even at 900 GeV lgc < 1 fm

Gluon shadowing is neglidgibly small in the measured rapidity range.

lgc =
Pg s

m2
J/ΨmN

x1(1− x1)

No gluon shadowing at RHIC at         , since               is too large.xF = 0 x2 ≥ 0.018

At        at RHICη = 2 x2 ≥ 0.0025  (in CSM                )〈x2〉 = 0.005

9
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Interpretation of this data in terms of a 
breakup cross section (+ gluon shadowing) is 
multiply incorrect.

Rapidity                                
-3 -2 -1 0 1 2 3
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 11% Global Scale Uncertainty±

Rapidity dependence at RHIC

The    pair attenuates not only in final state 
(breakup), but also in initial state (shadowing)

c̄c

σ(8)
c̄c = σ(1)

c̄c
7
16

Due to saturation both      and      steeply rise with rapidityσ(8)
c̄c σ(1)

c̄c

Q2
s (x2)σc̄c ∝ ∝ e0.288η

The dipole cross section nearly doubles between η=0 and η=2.

is dictated by DIS data from HERA.

 This is sufficient to explain the data

10
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Charmonium is suppressed differently from jets: 
no energy loss only absorption (breakup)

Workshop on RHIC Paradigms                            Anne M. Sickles                             April 16, 2010  

what about the protons?

21

pT (GeV/c)

STAR preliminary

Au-Au Au-Au

J/Ψ

Cu-Cu

J/Ψ

The nuclear ratio for all hadronic species has tendency to fall with p  
and then to level off.  Only J/Ψ has a trend to rise with 

T

T
p

AA collisions: J/Ψ puzzle 11
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The only fitted parameter is the transport coefficient, 
which is found to be                                  
smaller than what comes out of jet quenching analyses.

q̂0 = 0.2− 0.3 GeV2/fm

Resolving the puzzle

Initial state shadowing/attenuation of the                
dipole (not      ) passing through both nucleiJ/Ψ

c̄c

Final state in-medium attenuation of     
controlled by the transport coefficient q̂

J/Ψ

Gluon saturation leads to broadening of        
of       and to a strong Cronin enhancement.J/Ψ

〈p2
T〉0

0.5

1

1.5

2

0 2 4 6 8 10
pT (GeV)

R AA Cu-Cu

Au-Au

suppression offers a novel way to measure  q̂J/Ψ

BK, I.Potashnikova, I.Schmidt 

Three effects, which can be well calculated 
explain the puzzling behavior of RJ/Ψ

AA (pT)

12
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The time of formation of the       wave function is also short J/Ψ

In the c.m. of the collision a colorless    -pair is produced at the time c̄c

Relevant time scales
Production time:

which is much shorter that the time scale of medium creation,            tp ! t0

Formation  time:

Not a     dipole, but a fully formed       propagates through the mediumJ/Ψc̄c

! However,    is          longer in the rest frames of colliding nuclei
√

s/2mNtp

t∗p ∼
1√

4m2
c + p2

T

< 0.07 fm

tf = EJ/Ψ

(mΨ′−mJ/Ψ)mJ/Ψ
! 0.5 fm

13
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q̂(b, s, t) =
q̂0 t0

t
npart(b, s)
npart(0,0) t0 = 0.5 fmWe relied on the popular model , fixed

and adjusted                            to reproduce the data     q̂0 = 0.2− 0.3 GeV2/fm

Nuclear effects

0

0.5
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1.5

2

0 2 4 6 8 10
pT (GeV)

R AA

Cu-Cu

14

1 Final state attenuation

     breakup is controlled by the same transport coefficient as the energy loss.J/Ψ

The absorption cross section for a dipole propagating 
through a medium is related to the parton 
broadening, i.e. to the transport coefficient q̂

q̂ = 2 ρ
dσ(r)
dr2

∣∣∣
r=0

dS(r, l)
dl

= −1
2

q̂ r2
absorption rate

R(s,pT) =
1
π

π∫

0

dφ exp

[
− 1

2
〈r2J/Ψ〉

∞∫

l0

dl q̂(#s +#l)

]
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15Nuclear effects

0
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1
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R AA

Cu-Cu

q̂0 = 0.3 GeV2/fm

q̂(b, s, t) =
q̂0 t0

t
npart(b, s)
npart(0,0) t0 = 0.5 fmWe relied on the popular model , fixed

and adjusted                            to reproduce the data     q̂0 = 0.2− 0.3 GeV2/fm

1 Final state attenuation

     breakup is controlled by the same transport coefficient as the energy loss.J/Ψ

The absorption cross section for a dipole propagating 
through a medium is related to the parton 
broadening, i.e. to the transport coefficient q̂

q̂ = 2 ρ
dσ(r)
dr2

∣∣∣
r=0

dS(r, l)
dl

= −1
2

q̂ r2
absorption rate

R(s,pT) =
1
π

π∫

0

dφ exp

[
− 1

2
〈r2J/Ψ〉

∞∫

l0

dl q̂(#s +#l)

]
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0
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R AA

Cu-Cu

2 Initial state suppression

The     production time  in the nuclear rest frame c̄c

is sufficient (               ) for quark shadowing.5 < tp < 13 fm

tcp =
√

s
mN

√
4m2

c + p2
T

=
1

mNx2

Charm shadowing comes together with the breakup cross section, they are not 
separable. The result,            , is known from data. However, the impact 
parameter dependence is important and can be only calculated. 

SNA ≈ 0.8

SAB(s) = SNA(s)SNB(s)We assume 

Nuclear effects 16

However,             is too large (   is too short) for 
gluon shadowing.  

x2 > 0.015 lgp
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Cu-Cu The     production time  in the nuclear rest frame c̄c

is sufficient (               ) for quark shadowing.5 < tp < 13 fm

tcp =
√

s
mN

√
4m2

c + p2
T

=
1

mNx2

However,             is too large (   is too short) for 
gluon shadowing.  

x2 > 0.015 lgp

Charm shadowing comes together with the breakup cross section, they are not 
separable. The result,            , is known from data. However, the impact 
parameter dependence is important and can be only calculated. 

SNA ≈ 0.8

SAB(s) = SNA(s)SNB(s)We assume 

Nuclear effects

2 Initial state suppression
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3 Initial state saturation of gluons

Due to saturation gluons experience broadening ∆p2
T = 2C(s)TA(b)

with the coefficient      known from DIS data.  C(s)

The     distribution of       has the form:pT J/Ψ
dσ

dp2
T

∝
(
1 +

p2
T

6〈p2
T〉

)−6

Broadening results in                        〈p2
T〉 ⇒ 〈p2

T〉+ ∆p2
T

RT(pT) =
dσ
dp2

T

∣∣
〈p2

T〉+∆p2
T

dσ
dp2

T

∣∣
〈p2

T〉

Works amazingly well with no adjustment!

   This can be tested with the E866 data for 
J/Ψ production in pA at 800 GeV:

Nuclear effects 18
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Eventually, combining all three mechanisms we arrive at the final result

Nuclear effects

RJ/Ψ
AA (pT) =

∞∫

0
ds2 T2

A(s)R(s,pT)SAA(s)RT(s,pT)

∞∫

0
ds2 T2

A(s)

0

0.5

1

1.5

2

0 2 4 6 8 10
pT (GeV)

R AA

Cu-Cu

0

0.5

1

1.5

2

0 2 4 6 8 10
pT (GeV)

R AA Cu-Cu

Au-Au

in-medium attenuation

+ initial state 
shadowing/absorption

+ gluon saturation 
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Charmonium production offers a novel clean probe for 
the medium created in heavy ion collisions:

If any additional source of nuclear suppression was missed, that 
may lead only to a reduction of q̂0

Summarizing,

Production of other charmonia and bottomia should be a good test 
and bring forth more information

20

No energy loss, no coherence effects for a charmonium propagating 
through the medium. Attenuation is controlled by the transport 
coefficient which is found to be small,                                ,
compared to the results if jet quenching analyses based on the 
energy loss scenario.

q̂0 = 0.2− 0.3 GeV2/fm


